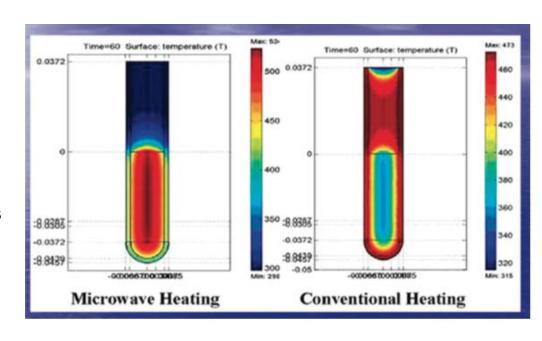
Efficiency and Selectivity of Microwave Reactors in Organic Chemistry

Alyssa Embry, Mary Beth Johnson, Matthew Wesson April, 22 2015


Two Main Principles of Microwave-Assisted Synthesis

Dipolar Mechanism

 Polar molecule follows electric field alignment

Electrical Conductor Mechanism

- Results in polarization
- Electrical resistance in solvent causes heating in sample

Acc. Chem. Res. **2011**, 44, 469-478. Acc. Chem. Res. **2005**, 38, 653-661.

Motivation

- Green Chemistry Principles
 - 5. Safer solvents and auxiliaries
 - 6. Design for energy efficiency
 - 9. Catalysis
- Arrhenius Law

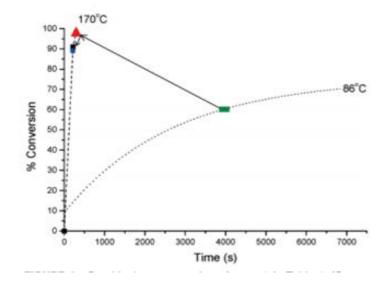
$$k = Ae^{-E_a/(RT)}$$

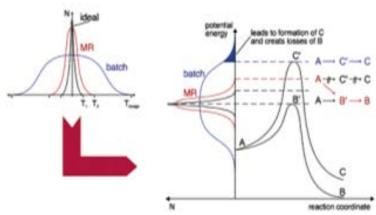
Solvent-free Accelerated Organic Syntheses Using Microwaves

Reactions once run in solvent to control reaction temperature can now be run without solvent using microwave assisted reactions.

- Produces higher yields
- Allows for faster reactions
- Cheaper because solvent isn't necessary
- Safer don't have to worry about pressure increases
- Can operate at ambient pressure

Green Chem. 2010, 12, 961-964.


Table 1 Optimisation of irradiation for solvent-free reactions.


OH H ₂ N MW H ¹ N N 110°C, 5 bars						
Eentry	Time/min	Power/W	Conversion (%)	Yield (%)		
1	2	50	30	27		
2	4	50	49	45		
2 3 4 5	6	50	54	48		
4	2	100	90	89		
	4	100	100	96		
6	6	100	100	91		
7	2	150	95	88		
8	4	150	100	90		
9	6	150	100	82		
10°	5	100	18	_		
11"	10	100	100	93		
12*	12 h, toluene, Dean-Stark	94				

^{*}In toluene 0.18 M. *See ref. 14.

Superior Heating Methods in Microwave Assisted Reactions

Rapid heating causes the reaction to reach a higher percent conversion and also causes an increase in the speed of the reaction.

Chem. Rev. 2007, 107, 2300-2318.

Selectivity

- Solvent-free reactions
- High stereoselectivity
- High regioselectivity

Table 5 Self-condensation of acyclic aldehydes and ketones

Î	Et ₃ N (40 mol%), LiClO ₄ (40 mol%)	R ₁
R ₁	120 °C, 20 min.	R ₂ Y R ₂

R, $E: Z^b$ Entry R_1 Yield (%)a C_5H_{11} 95 98:2 C_4H_9 93(0)° 97:3 C_3H_7 95:5 C_2H_5 98:2 (CH₃)₂CHCH₂ 94:6 92 PhCH₂ Η 98:2 PhCH₂CH₂ 89 97:3 H 4-Me-C₆H₄ 15 >99:1 Н 42^{a} 4-Me-C₆H₄ 50:50

^a Isolated yield. ^b Ratio based on the peak integration of ¹H NMR (500 MHz). ^c Reaction without LiClO₄. ^d Reaction was done at 200 °C for 4 h.

Selectivity

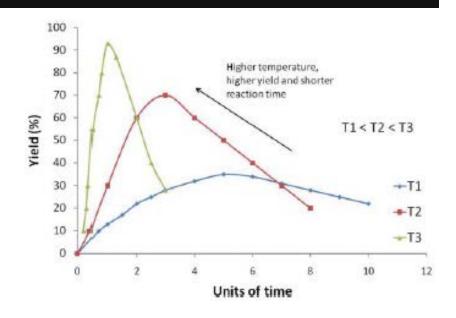
Little or no loss of functional group tolerance

Table 5

Oxidation of substituted alcohols to aldehydes using cobalt aluminate (sample A) under the optimum conditions.

Substrate	Conversion (%)	Selectivity (%)	
p-Methoxy benzyl alcohol	74.11	81.34	
p-Nitro benzyl alcohol	63.09	79.12	
1-Phenyl ethanol	63.45	83.25	
1-Phenyl-1-propanol	58.34	80.94	
Benzyl alcohol	80.91	98.68	

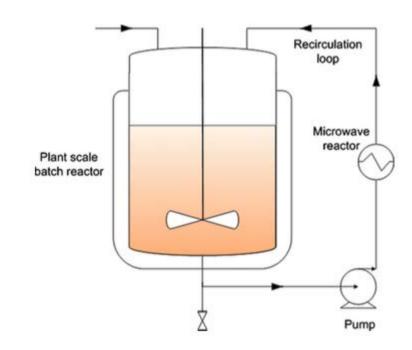
Table 6

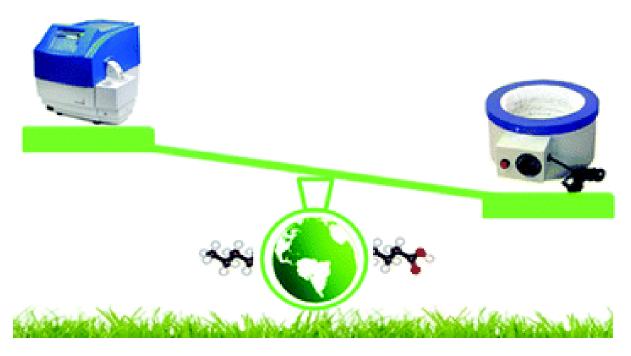

Oxidation of substituted alcohols to aldehydes using cobalt aluminate (sample B) under the optimum conditions.

Substrate	Conversion (%)	Selectivity (%)
p-Methoxy benzyl alcohol	73.71	78.84
p-Nitro benzyl alcohol	58.07	74.89
1-Phenyl ethanol	78.54	85.43
1-Phenyl-1-propanol	71.23	81.87
Benzyl alcohol	95.98	98.90

Green Chem. 1999, 1, 43-55.; Ceramics International41(2015)2069–2080

Thermal vs MW Heating


- Rapid heating likely the cause of improvements in yield, selectivity, etc.
- Same improvements possible, but infeasible in conventional systems


Industrial Scale Microwave Reactors

Large scale reactions

- Laboratory to industrial
 - mg scale to kg scale
- Single mode to multimode

Conclusions

Green Chem. 2011, 13, 794-806.